Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of IscU residues critical for de novo iron-sulfur cluster assembly.

Identifieur interne : 000235 ( Main/Exploration ); précédent : 000234; suivant : 000236

Identification of IscU residues critical for de novo iron-sulfur cluster assembly.

Auteurs : Naoyuki Tanaka [Japon] ; Eiki Yuda [Japon] ; Takashi Fujishiro [Japon] ; Kei Hirabayashi [Japon] ; Kei Wada [Japon] ; Yasuhiro Takahashi [Japon]

Source :

RBID : pubmed:31532036

Descripteurs français

English descriptors

Abstract

IscU is a central component of the ISC machinery and serves as a scaffold for the de novo assembly of iron-sulfur (Fe-S) clusters prior to their delivery to target apo-Fe-S proteins. However, the molecular mechanism is not yet fully understood. In this study, we have conducted mutational analysis of E. coli IscU using the recently developed genetic complementation system of a mutant that can survive without Fe-S clusters. The Fe-S cluster ligands (C37, C63, H105, C106) and the proximal D39 and K103 residues are essential for in vivo function of IscU and could not be substituted with any other amino acids. Furthermore, we found that substitution of Y3, a strictly conserved residue among IscU homologs, abolished in vivo functions. Surprisingly, a second-site suppressor mutation in IscS (A349V) reverted the defect caused by IscU Y3 substitutions. Biochemical analysis revealed that IscU Y3 was crucial for functional interaction with IscS and sulfur transfer between the two proteins. Our findings suggest that the critical role of IscU Y3 is linked to the conformational dynamics of the flexible loop of IscS, which is required for the ingenious sulfur transfer to IscU.

DOI: 10.1111/mmi.14392
PubMed: 31532036


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of IscU residues critical for de novo iron-sulfur cluster assembly.</title>
<author>
<name sortKey="Tanaka, Naoyuki" sort="Tanaka, Naoyuki" uniqKey="Tanaka N" first="Naoyuki" last="Tanaka">Naoyuki Tanaka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yuda, Eiki" sort="Yuda, Eiki" uniqKey="Yuda E" first="Eiki" last="Yuda">Eiki Yuda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujishiro, Takashi" sort="Fujishiro, Takashi" uniqKey="Fujishiro T" first="Takashi" last="Fujishiro">Takashi Fujishiro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hirabayashi, Kei" sort="Hirabayashi, Kei" uniqKey="Hirabayashi K" first="Kei" last="Hirabayashi">Kei Hirabayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692</wicri:regionArea>
<wicri:noRegion>889-1692</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wada, Kei" sort="Wada, Kei" uniqKey="Wada K" first="Kei" last="Wada">Kei Wada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692</wicri:regionArea>
<wicri:noRegion>889-1692</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takahashi, Yasuhiro" sort="Takahashi, Yasuhiro" uniqKey="Takahashi Y" first="Yasuhiro" last="Takahashi">Yasuhiro Takahashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31532036</idno>
<idno type="pmid">31532036</idno>
<idno type="doi">10.1111/mmi.14392</idno>
<idno type="wicri:Area/Main/Corpus">000224</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000224</idno>
<idno type="wicri:Area/Main/Curation">000224</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000224</idno>
<idno type="wicri:Area/Main/Exploration">000224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of IscU residues critical for de novo iron-sulfur cluster assembly.</title>
<author>
<name sortKey="Tanaka, Naoyuki" sort="Tanaka, Naoyuki" uniqKey="Tanaka N" first="Naoyuki" last="Tanaka">Naoyuki Tanaka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yuda, Eiki" sort="Yuda, Eiki" uniqKey="Yuda E" first="Eiki" last="Yuda">Eiki Yuda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujishiro, Takashi" sort="Fujishiro, Takashi" uniqKey="Fujishiro T" first="Takashi" last="Fujishiro">Takashi Fujishiro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hirabayashi, Kei" sort="Hirabayashi, Kei" uniqKey="Hirabayashi K" first="Kei" last="Hirabayashi">Kei Hirabayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692</wicri:regionArea>
<wicri:noRegion>889-1692</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wada, Kei" sort="Wada, Kei" uniqKey="Wada K" first="Kei" last="Wada">Kei Wada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692</wicri:regionArea>
<wicri:noRegion>889-1692</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takahashi, Yasuhiro" sort="Takahashi, Yasuhiro" uniqKey="Takahashi Y" first="Yasuhiro" last="Takahashi">Yasuhiro Takahashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570</wicri:regionArea>
<wicri:noRegion>338-8570</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular microbiology</title>
<idno type="eISSN">1365-2958</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Escherichia coli Proteins (ultrastructure)</term>
<term>Iron (metabolism)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Iron-Sulfur Proteins (ultrastructure)</term>
<term>Ligands (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Sulfur (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (génétique)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Ferrosulfoprotéines (ultrastructure)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Protéines Escherichia coli (ultrastructure)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Soufre (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acids</term>
<term>Escherichia coli Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acides aminés</term>
<term>Ferrosulfoprotéines</term>
<term>Mutation</term>
<term>Protéines Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Protéines Escherichia coli</term>
<term>Protéines bactériennes</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Ligands</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Ferrosulfoprotéines</term>
<term>Liaison aux protéines</term>
<term>Ligands</term>
<term>Protéines Escherichia coli</term>
<term>Relation structure-activité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">IscU is a central component of the ISC machinery and serves as a scaffold for the de novo assembly of iron-sulfur (Fe-S) clusters prior to their delivery to target apo-Fe-S proteins. However, the molecular mechanism is not yet fully understood. In this study, we have conducted mutational analysis of E. coli IscU using the recently developed genetic complementation system of a mutant that can survive without Fe-S clusters. The Fe-S cluster ligands (C37, C63, H105, C106) and the proximal D39 and K103 residues are essential for in vivo function of IscU and could not be substituted with any other amino acids. Furthermore, we found that substitution of Y3, a strictly conserved residue among IscU homologs, abolished in vivo functions. Surprisingly, a second-site suppressor mutation in IscS (A349V) reverted the defect caused by IscU Y3 substitutions. Biochemical analysis revealed that IscU Y3 was crucial for functional interaction with IscS and sulfur transfer between the two proteins. Our findings suggest that the critical role of IscU Y3 is linked to the conformational dynamics of the flexible loop of IscS, which is required for the ingenious sulfur transfer to IscU.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31532036</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2958</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>112</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Molecular microbiology</Title>
<ISOAbbreviation>Mol Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of IscU residues critical for de novo iron-sulfur cluster assembly.</ArticleTitle>
<Pagination>
<MedlinePgn>1769-1783</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mmi.14392</ELocationID>
<Abstract>
<AbstractText>IscU is a central component of the ISC machinery and serves as a scaffold for the de novo assembly of iron-sulfur (Fe-S) clusters prior to their delivery to target apo-Fe-S proteins. However, the molecular mechanism is not yet fully understood. In this study, we have conducted mutational analysis of E. coli IscU using the recently developed genetic complementation system of a mutant that can survive without Fe-S clusters. The Fe-S cluster ligands (C37, C63, H105, C106) and the proximal D39 and K103 residues are essential for in vivo function of IscU and could not be substituted with any other amino acids. Furthermore, we found that substitution of Y3, a strictly conserved residue among IscU homologs, abolished in vivo functions. Surprisingly, a second-site suppressor mutation in IscS (A349V) reverted the defect caused by IscU Y3 substitutions. Biochemical analysis revealed that IscU Y3 was crucial for functional interaction with IscS and sulfur transfer between the two proteins. Our findings suggest that the critical role of IscU Y3 is linked to the conformational dynamics of the flexible loop of IscS, which is required for the ingenious sulfur transfer to IscU.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tanaka</LastName>
<ForeName>Naoyuki</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuda</LastName>
<ForeName>Eiki</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fujishiro</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-7967-8380</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirabayashi</LastName>
<ForeName>Kei</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wada</LastName>
<ForeName>Kei</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takahashi</LastName>
<ForeName>Yasuhiro</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-0588-6045</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Microbiol</MedlineTA>
<NlmUniqueID>8712028</NlmUniqueID>
<ISSNLinking>0950-382X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C411665">IscU protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31532036</ArticleId>
<ArticleId IdType="doi">10.1111/mmi.14392</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adrover, M., Howes, B.D., Iannuzzi, C., Smulevich, G. and Pastore, A. (2015) Anatomy of an iron-sulfur cluster scaffold protein: understanding the determinants of [2Fe-2S] cluster stability on IscU. Biochimica et Biophysica Acta, 1853, 1448-1456.</Citation>
</Reference>
<Reference>
<Citation>Agar, J.N., Krebs, C., Frazzon, J., Huynh, B.H., Dean, D.R. and Johnson, M.K. (2000) IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry, 39, 7856-7862.</Citation>
</Reference>
<Reference>
<Citation>Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 2, 0008.</Citation>
</Reference>
<Reference>
<Citation>Bak, D.W. and Elliott, S.J. (2014) Alternative FeS cluster ligands: tuning redox potentials and chemistry. Current Opinion in Chemical Biology, 19, 50-58.</Citation>
</Reference>
<Reference>
<Citation>Beinert, H., Holm, R.H. and Münck, E. (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science, 277, 653-659.</Citation>
</Reference>
<Reference>
<Citation>Blanc, B., Gerez, C. and Ollagnier de Choudens, S. (2015) Assembly of Fe/S proteins in bacterial systems: biochemistry of the bacterial ISC system. Biochimica et Biophysica Acta, 1853, 1436-1447.</Citation>
</Reference>
<Reference>
<Citation>Boniecki, M.T., Freibert, S.A., Muhlenhoff, U., Lill, R. and Cygler, M. (2017) Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nature Communications, 8, 1287.</Citation>
</Reference>
<Reference>
<Citation>Bonomi, F., Iametti, S., Morleo, A., Ta, D. and Vickery, L.E. (2011) Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange. Biochemistry, 50, 9641-9650.</Citation>
</Reference>
<Reference>
<Citation>Brancaccio, D., Gallo, A., Mikolajczyk, M., Zovo, K., Palumaa, P., Novellino, E., et al. (2014) Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery. Journal of the American Chemical Society, 136, 16240-16250.</Citation>
</Reference>
<Reference>
<Citation>Braymer, J.J. and Lill, R. (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria. Journal of Biological Chemistry, 292, 12754-12763.</Citation>
</Reference>
<Reference>
<Citation>Cai, K., Frederick, R.O., Tonelli, M. and Markley, J.L. (2018) ISCU(M108I) and ISCU(D39V) differ from wild-Type ISCU in their failure to form cysteine desulfurase complexes containing both frataxin and ferredoxin. Biochemistry, 57, 1491-1500.</Citation>
</Reference>
<Reference>
<Citation>Chandramouli, K. and Johnson, M.K. (2006) HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry, 45, 11087-11095.</Citation>
</Reference>
<Reference>
<Citation>Chandramouli, K., Unciuleac, M.C., Naik, S., Dean, D.R., Huynh, B.H. and Johnson, M.K. (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry, 46, 6804-6811.</Citation>
</Reference>
<Reference>
<Citation>Cupp-Vickery, J.R., Urbina, H. and Vickery, L.E. (2003) Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. Journal of Molecular Biology, 330, 1049-1059.</Citation>
</Reference>
<Reference>
<Citation>Cupp-Vickery, J.R., Peterson, J.C., Ta, D.T. and Vickery, L.E. (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. Journal of Molecular Biology, 342, 1265-1278.</Citation>
</Reference>
<Reference>
<Citation>Dai, Y. and Outten, F.W. (2012) The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. FEBS Letters, 586, 4016-4022.</Citation>
</Reference>
<Reference>
<Citation>Fontecave, M. (2006) Iron-sulfur clusters: ever-expanding roles. Nature Chemical Biology, 2, 171-174.</Citation>
</Reference>
<Reference>
<Citation>Foster, M.W., Mansy, S.S., Hwang, J., Penner-Hahn, J.E., Surerus, K.K. and Cowan, J.A. (2000) A mutant human IscU protein contains a stable [2Fe-2S]2+ center of possible functional significance. Journal of the American Chemical Society, 122, 6805-6806.</Citation>
</Reference>
<Reference>
<Citation>Fujishiro, T., Terahata, T., Kunichika, K., Yokoyama, N., Maruyama, C., Asai, K., et al. (2017) Zinc-ligand swapping mediated complex formation and sulfur transfer between SufS and SufU for iron-sulfur cluster biogenesis in Bacillus subtilis. Journal of the American Chemical Society, 139, 18464-18467.</Citation>
</Reference>
<Reference>
<Citation>Hoff, K.G., Silberg, J.J. and Vickery, L.E. (2000) Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97, 7790-7795.</Citation>
</Reference>
<Reference>
<Citation>Hoff, K.G., Ta, D.T., Tapley, T.L., Silberg, J.J. and Vickery, L.E. (2002) Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. Journal of Biological Chemistry, 277, 27353-27359.</Citation>
</Reference>
<Reference>
<Citation>Hoff, K.G., Cupp-Vickery, J.R. and Vickery, L.E. (2003) Contributions of the LPPVK motif of the iron-sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. Journal of Biological Chemistry, 278, 37582-37589.</Citation>
</Reference>
<Reference>
<Citation>Huang, J. and Cowan, J.A. (2009) Iron-sulfur cluster biosynthesis: role of a semi-conserved histidine. Chemical Communications, 3071-3073.</Citation>
</Reference>
<Reference>
<Citation>Jang, S. and Imlay, J.A. (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Molecular Microbiology, 78, 1448-1467.</Citation>
</Reference>
<Reference>
<Citation>Johnson, D.C., Dean, D.R., Smith, A.D. and Johnson, M.K. (2005) Structure, function, and formation of biological iron-sulfur clusters. Annual Review of Biochemistry, 74, 247-281.</Citation>
</Reference>
<Reference>
<Citation>Johnson, D.C., Unciuleac, M.C. and Dean, D.R. (2006) Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. Journal of Bacteriology, 188, 7551-7561.</Citation>
</Reference>
<Reference>
<Citation>Kakuta, Y., Horio, T., Takahashi, Y. and Fukuyama, K. (2001) Crystal structure of Escherichia coli Fdx, an adrenodoxin-type ferredoxin involved in the assembly of iron-sulfur clusters. Biochemistry, 40, 11007-11012.</Citation>
</Reference>
<Reference>
<Citation>Kato, S., Mihara, H., Kurihara, T., Takahashi, Y., Tokumoto, U., Yoshimura, T., et al. (2002) Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron-sulfur cluster assembly. Proceedings of the National Academy of Sciences of the United States of America, 99, 5948-5952.</Citation>
</Reference>
<Reference>
<Citation>Kim, J.H., Tonelli, M. and Markley, J.L. (2012) Disordered form of the scaffold protein IscU is the substrate for iron-sulfur cluster assembly on cysteine desulfurase. Proceedings of the National Academy of Sciences of the United States of America, 109, 454-459.</Citation>
</Reference>
<Reference>
<Citation>Kim, J.H., Frederick, R.O., Reinen, N.M., Troupis, A.T. and Markley, J.L. (2013) [2Fe-2S]-ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin. Journal of the American Chemical Society, 135, 8117-8120.</Citation>
</Reference>
<Reference>
<Citation>Kim, J.H., Bothe, J.R., Frederick, R.O., Holder, J.C. and Markley, J.L. (2014) Role of IscX in iron-sulfur cluster biogenesis in Escherichia coli. Journal of the American Chemical Society, 136, 7933-7942.</Citation>
</Reference>
<Reference>
<Citation>Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M. 2nd, et al. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175-176.</Citation>
</Reference>
<Reference>
<Citation>Lill, R. (2009) Function and biogenesis of iron-sulphur proteins. Nature, 460, 831-838.</Citation>
</Reference>
<Reference>
<Citation>Loiseau, L., Gerez, C., Bekker, M., Ollagnier-de Choudens, S., Py, B., Sanakis, Y., et al. (2007) ErpA, an iron sulfur (Fe-S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 104, 13626-13631.</Citation>
</Reference>
<Reference>
<Citation>Marinoni, E.N., de Oliveira, J.S., Nicolet, Y., Raulfs, E.C., Amara, P., Dean, D.R., et al. (2012) (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angewandte Chemie International Edition, 51, 5439-5442.</Citation>
</Reference>
<Reference>
<Citation>Mettert, E.L. and Kiley, P.J. (2015) Fe-S proteins that regulate gene expression. Biochimica et Biophysica Acta, 1853, 1284-1293.</Citation>
</Reference>
<Reference>
<Citation>Mihara, H. and Esaki, N. (2002) Bacterial cysteine desulfurases: their function and mechanisms. Applied Microbiology and Biotechnology, 60, 12-23.</Citation>
</Reference>
<Reference>
<Citation>Mihara, H., Kurihara, T., Yoshimura, T. and Esaki, N. (2000) Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions. Journal of Biochemistry, 127, 559-567.</Citation>
</Reference>
<Reference>
<Citation>Nakamura, M., Saeki, K. and Takahashi, Y. (1999) Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster. Journal of Biochemistry, 126, 10-18.</Citation>
</Reference>
<Reference>
<Citation>Outten, F.W., Wood, M.J., Munoz, F.M. and Storz, G. (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. Journal of Biological Chemistry, 278, 45713-45719.</Citation>
</Reference>
<Reference>
<Citation>Outten, F.W., Djaman, O. and Storz, G. (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Molecular Microbiology, 52, 861-872.</Citation>
</Reference>
<Reference>
<Citation>Pagnier, A., Nicolet, Y. and Fontecilla-Camps, J.C. (2015) IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly. Biochimica et Biophysica Acta, 1853, 1457-1463.</Citation>
</Reference>
<Reference>
<Citation>Pain, D. and Dancis, A. (2016) Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis. Current Opinion in Genetics & Development, 38, 45-51.</Citation>
</Reference>
<Reference>
<Citation>Raulfs, E.C., O'Carroll, I.P., Dos Santos, P.C., Unciuleac, M.C. and Dean, D.R. (2008) In vivo iron-sulfur cluster formation. Proceedings of the National Academy of Sciences of the United States of America, 105, 8591-8596.</Citation>
</Reference>
<Reference>
<Citation>Selbach, B.P., Chung, A.H., Scott, A.D., George, S.J., Cramer, S.P. and Dos Santos, P.C. (2014) Fe-S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein. Biochemistry, 53, 152-160.</Citation>
</Reference>
<Reference>
<Citation>Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J.F., et al. (2010) Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biology, 8, e1000354.</Citation>
</Reference>
<Reference>
<Citation>Shimomura, Y., Takahashi, Y., Kakuta, Y. and Fukuyama, K. (2005) Crystal structure of Escherichia coli YfhJ protein, a member of the ISC machinery involved in assembly of iron-sulfur clusters. Proteins, 60, 566-569.</Citation>
</Reference>
<Reference>
<Citation>Shimomura, Y., Kamikubo, H., Nishi, Y., Masako, T., Kataoka, M., Kobayashi, Y., et al. (2007) Characterization and crystallization of an IscU-type scaffold protein with bound [2Fe-2S] cluster from the hyperthermophile, aquifex aeolicus. Journal of Biochemistry, 142, 577-586.</Citation>
</Reference>
<Reference>
<Citation>Shimomura, Y., Wada, K., Fukuyama, K. and Takahashi, Y. (2008) The asymmetric trimeric architecture of [2Fe-2S] IscU: implications for its scaffolding during iron-sulfur cluster biosynthesis. Journal of Molecular Biology, 383, 133-143.</Citation>
</Reference>
<Reference>
<Citation>Smith, A.D., Agar, J.N., Johnson, K.A., Frazzon, J., Amster, I.J., Dean, D.R., et al. (2001) Sulfur transfer from IscS to IscU: the first step in iron-sulfur cluster biosynthesis. Journal of the American Chemical Society, 123, 11103-11104.</Citation>
</Reference>
<Reference>
<Citation>Takahashi, Y. and Tokumoto, U. (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. Journal of Biological Chemistry, 277, 28380-28383.</Citation>
</Reference>
<Reference>
<Citation>Takeshita, S., Sato, M., Toba, M., Masahashi, W. and Hashimoto-Gotoh, T. (1987) High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene, 61, 63-74.</Citation>
</Reference>
<Reference>
<Citation>Tan, G., Lu, J., Bitoun, J.P., Huang, H. and Ding, H. (2009) IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. The Biochemical Journal, 420, 463-472.</Citation>
</Reference>
<Reference>
<Citation>Tanaka, N., Kanazawa, M., Tonosaki, K., Yokoyama, N., Kuzuyama, T. and Takahashi, Y. (2016) Novel features of the ISC machinery revealed by characterization of Escherichia coli mutants that survive without iron-sulfur clusters. Molecular Microbiology, 99, 835-848.</Citation>
</Reference>
<Reference>
<Citation>Tokumoto, U. and Takahashi, Y. (2001) Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins. Journal of Biochemistry, 130, 63-71.</Citation>
</Reference>
<Reference>
<Citation>Tokumoto, U., Nomura, S., Minami, Y., Mihara, H., Kato, S., Kurihara, T., et al. (2002) Network of protein-protein interactions among iron-sulfur cluster assembly proteins in Escherichia coli. Journal of Biochemistry, 131, 713-719.</Citation>
</Reference>
<Reference>
<Citation>Tokumoto, U., Kitamura, S., Fukuyama, K. and Takahashi, Y. (2004) Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. Journal of Biochemistry, 136, 199-209.</Citation>
</Reference>
<Reference>
<Citation>Unciuleac, M.C., Chandramouli, K., Naik, S., Mayer, S., Huynh, B.H., Johnson, M.K., et al. (2007) In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein. Biochemistry, 46, 6812-6821.</Citation>
</Reference>
<Reference>
<Citation>Urbina, H.D., Silberg, J.J., Hoff, K.G. and Vickery, L.E. (2001) Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. Journal of Biological Chemistry, 276, 44521-44526.</Citation>
</Reference>
<Reference>
<Citation>Vinella, D., Brochier-Armanet, C., Loiseau, L., Talla, E. and Barras, F. (2009) Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genetics, 5, e1000497.</Citation>
</Reference>
<Reference>
<Citation>Webert, H., Freibert, S.A., Gallo, A., Heidenreich, T., Linne, U., Amlacher, S., et al. (2014) Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nature Communications, 5, 5013.</Citation>
</Reference>
<Reference>
<Citation>Wu, G., Mansy, S.S., Wu, S.P., Surerus, K.K., Foster, M.W. and Cowan, J.A. (2002) Characterization of an iron-sulfur cluster assembly protein (ISU1) from Schizosaccharomyces pombe. Biochemistry, 41, 5024-5032.</Citation>
</Reference>
<Reference>
<Citation>Yokoyama, N., Nonaka, C., Ohashi, Y., Shioda, M., Terahata, T., Chen, W., et al. (2018) Distinct roles for U-type proteins in iron-sulfur cluster biosynthesis revealed by genetic analysis of the Bacillus subtilis sufCDSUB operon. Molecular Microbiology, 107, 688-703.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Tanaka, Naoyuki" sort="Tanaka, Naoyuki" uniqKey="Tanaka N" first="Naoyuki" last="Tanaka">Naoyuki Tanaka</name>
</noRegion>
<name sortKey="Fujishiro, Takashi" sort="Fujishiro, Takashi" uniqKey="Fujishiro T" first="Takashi" last="Fujishiro">Takashi Fujishiro</name>
<name sortKey="Hirabayashi, Kei" sort="Hirabayashi, Kei" uniqKey="Hirabayashi K" first="Kei" last="Hirabayashi">Kei Hirabayashi</name>
<name sortKey="Takahashi, Yasuhiro" sort="Takahashi, Yasuhiro" uniqKey="Takahashi Y" first="Yasuhiro" last="Takahashi">Yasuhiro Takahashi</name>
<name sortKey="Wada, Kei" sort="Wada, Kei" uniqKey="Wada K" first="Kei" last="Wada">Kei Wada</name>
<name sortKey="Yuda, Eiki" sort="Yuda, Eiki" uniqKey="Yuda E" first="Eiki" last="Yuda">Eiki Yuda</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31532036
   |texte=   Identification of IscU residues critical for de novo iron-sulfur cluster assembly.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31532036" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020